Плотность стекла — свойства и физические характеристики
Плотность стекла — свойства и физические характеристики
Силикатные стекла отличаются необычным сочетанием свойств, прозрачностью, абсолютной водонепроницаемостью и универсальной химической стойкостью. Все это объясняется спецификой состава и строения стекла.
Плотность стекла зависит от химического состава и для обычных строительных стекол составляет 2400. 2600 кг/м 3 . Плотность оконного стекла — 2550 кг/м’. Высокой плотностью отличаются стекла, содержащие оксид свинца («богемский хрусталь») — более 3000 кг/м 3 . Пористость и водопоглощение стекла практически равны 0 %.
Механические свойства. Стекло в строительных конструкциях чаще подвергается изгибу, растяжению и удару и реже сжатию, поэтому главными показателями, определяющими его механические свойства, следует считать прочность при растяжении и хрупкость.
Теоретическая прочность стекла при растяжении — (10. 12)•10 3 МПа. Практически же эта величина ниже в 200. 300 раз и составляет от 30 до 60 МПа. Это объясняется тем, что в стекле имеются ослабленные участки (микронеоднородности, дефекты поверхности, внутренние напряжения). Чем больше размер стеклоизделий, тем вероятнее наличие таких участков. Примером зависимости прочности стекла от размера испытуемого изделия служит стеклянное волокно. У стекловолокна диаметром 1. 10 мкм прочность при растяжении 300. 500 МПа, т. е. почти в 10 раз выше, чем у листового стекла. Сильно снижают прочность стекла на растяжение царапины; на этом основана резка стекла алмазом.
Прочность стекла при сжатии высока — 900. 1000 МПа, т. е. почти как у стали и чугуна. В диапазоне температур от — 50 до + 70° С прочность стекла практически не изменяется.
Стекло при нормальных температурах отличается тем, что у него отсутствуют пластические деформации. При нагружении оно подчиняется закону Гука вплоть до хрупкого разрушения. Модуль упругости стекла Е= (7. 7,5) • 10 4 МПа.
Хрупкость — главный недостаток стекла. Основной показатель хрупкости — отношение модуля упругости к прочности при растяжении E/Rp. У стекла оно составляет 1300. 1500 (у стали 400. 460, каучука 0,4. 0,6). Кроме того, однородность строения (гомогенность) стекла способствует беспрепятственному развитию трещин, что является необходимым условием для проявления хрупкости.
Твердость стекла, представляющего собой по химическому составу вещество, близкое к полевым шпатам, такая же, как у этих минералов, и в зависимости от химического состава находится в пределах 5. 7 по шкале Мооса.
Оптические свойства стекла характеризуются светопропусканием прозрачностью), светопреломлением, отражением, рассеиванием и др. Обычные силикатные стекла, кроме специальных (см. ниже), пропускают всю видимую часть спектра (до 88. 92 %) и практически не пропускает ультрафиолетовые и инфракрасные лучи. Показатель преломления строительного стекла (п = 1,50. 1,52) определяет силу отраженного света и светопропускание стекла при разных углах падения света. При изменении угла падения света с 0 до 75° светопропускание стекла уменьшается с 90 до 50 %.
Теплопроводность различных видов стекла мало зависит от их состава и составляет 0,6. 0,8 Вт/(м•К), что почти в 10 раз ниже, чем у аналогичных кристаллических минералов. Например, теплопроводность кристалла кварца — 7,2 Вт/(м•К).
Коэффициент линейного температурного расширения (КЛТР) стекла относительно невелик (для обычного стекла 9•10 -6 К -1 ). Но из-за низкой теплопроводности и высокого модуля упругости напряжения, развивающиеся в стекле при резком одностороннем нагреве (или охлаждении), могут достигать значений, приводящих к разрушению стекла. Это объясняет относительно малую термостойкость (способность выдерживать резкие перепады температур) обычного стекла. Она составляет 70. 90° С.
Звукоизолирующая способность стекла довольно высока. Стекло толщиной 1 см по звукоизоляции приблизительно соответствует кирпичной стене в полкирпича — 12 см.
Химическая стойкость силикатного стекла — одно из самых уникальных его свойств. Стекло хорошо противостоит действию воды, щелочей и кислот (за исключением плавиковой и фосфорной). Объясняется это тем, что при действии воды и водных растворов из наружного слоя стекла вымываются ионы Na + и Са ++ и образуется химически стойкая пленка, обогащенная SiO2. Эта пленка защищает стекло от дальнейшего разрушения.
Наши консультанты с удовольствием ответят на них!
Стекло: основные свойства и характеристики
С давних пор для осветления и придания жилому помещению уюта делали окна. Атак как стекло было большой редкостью, то вместо него использовались другие материалы. К счастью, в настоящее время стекло не редкость: его используют везде и для разных целей. Причем купить можно не только обыкновенное оконнное стекло, но и цветное для изготовления витражей.
Все твердые тела делят на кристаллические и аморфные. Последние обладают свойством плавиться при достаточно высокой температуре. В отличие от кристаллических тел они имеют структуру лишь с небольшими участками упорядоченно соединенных ионов, причем эти участки соединены между собой так, что образуют асимметрию.
В науке (химия, физика) стеклом принято называть все аморфные тела, которые образуются в результате переохлаждения расплава. Эти тела вследствие постепенного увеличения степени вязкости оказываются наделенными всеми признаками твердых тел. Они также обладают свойством обратного перехода из твердого в жидкое состояние.
Стеклом в обыденной жизни называют прозрачный хрупкий материал. В зависимости от того или иного компонента, входящего в состав исходной стекломассы, в промышленности различают следующие виды стекла: силикатные, боратные, боросиликатные, алюмосиликатные, бороалюмосиликатные, фосфатные и другие.
Как и любое другое физическое тело, стекло обладает рядом свойств.
Физические и механические свойства стекла
Плотность стекол зависит от компонентов, входящих в их состав. Так, стекломасса, в больших количествах включающая оксид свинца, более плотная по сравнению со стеклом, состоящим помимо прочих материалов и из оксидов лития, бериллия или бора. Как правило, средняя плотность стекол (оконное, тарное, сортовое, термостойкое) колеблется от 2,24×10 в кубе — 2,9×10 в кубе кг/м3. Плотность хрусталя несколько больше: от 3,5 х 10 в кубе — 3,7 х 10 в кубе кг/м3.
Прочность. Под прочностью на сжатие в физике и химии принято понимать способность того или иного материала сопротивляться внутренним напряжениям при воздействии извне каких-либо нагрузок. Предел прочности стекла составляет от 500 до 2000 МПа (хрусталя — 700-800 МПа). Сравним эту величину с величиной прочности чугуна и стали: соответственно 600-1200 и 2000 МПа.
При этом степень прочности того или иного вида стекла зависит от химического вещества, входящего в его состав.
Более прочны стекла, включающие в свой состав оксиды кальция или бора. Низкой прочностью отличаются стекла с оксидами свинца и алюминия.
Предел прочности стекла на растяжение составляет всего 35-100 МПа. Степень прочности стекла на растяжение в большей степени зависит от наличия различных дефектов, образующихся на его поверхности. Различные повреждения (трещины, глубокие царапины) значительно снижают величину прочности материала. Для искусственного увеличения показателя прочности поверхность некоторых стеклоизделий покрывают кремнийорганической пленкой.
Хрупкость — механическое свойство тел разрушаться под действием внешних сил. Величина хрупкости стекла в основном зависит не от химического состава образующих его компонентов, а в большей степени от однородности стекломассы (входящие в его состав компоненты должны быть беспримесными, чистыми) и толщины стенок стеклоизделия.
Твердостью обозначают механическое свойство одного материала сопротивляться проникновению в него другого, более твердого. Определить степень твердости того или иного материла можно с помощью специальной таблицы-шкалы, отражающей свойства некоторых минералов, которые расположены по возрастающей, начиная с менее твердого, талька, твердость которого взята за единицу, и заканчивая самым твердым — алмазом с твердостью в 10 условно принятых единиц.
Часто твердость стекла «измеряют» с помощью шлифования, используя так называемый метод определения абразивной твердости. В таком случае ее величина устанавливается в зависимости от скорости отслаивания единицы поверхности стеклоизделия при определенных условиях проведения шлифовки.
Степень твердости того или иного вида стекла в основном зависит от химического состава входящих в него компонентов. Так, использование при создании стекломассы оксида свинца значительно снижает твердость стекла. И, напротив, силикатные стекла достаточно плохо поддаются механической обработке.
Теплоемкостью называют свойство тел принимать и сохранять определенное количество теплоты при каком-либо процессе без изменения состояния.
Теплоемкость стекла прямо зависит от химического состава компонентов, входящих в состав исходной стекломассы. Его удельная теплота при средней температуре равна 0,33-1,05 Дж/(кгхК). Причем чем выше в стекломассе содержание оксидов свинца и бария, тем ниже показатель теплопроводности. Но вот легкие оксиды, такие, например, как оксид лития, способны повысить теплопроводность стекла.
При изготовлении стеклоизделий следует помнить о том, что аморфные тела, обладающие низкой теплоемкостью, остывают значительно медленнее, чем тела с высоким показателем теплоемкости. У таких тел наблюдается также увеличение количества теплоемкости с повышением внешней температуры. Причем в жидком состоянии этот показатель растет несколько быстрее. Это характерно и для стекол различных типов.
Теплопроводность. Таким термином в науке обозначают свойство тел пропускать через себя теплоту от одной поверхности до другой, при условии, что у последних разная температура.
Известно, что стекло плохо проводит тепло (кстати, это свойство широко используется в строительстве зданий). Уровень его теплопроводности в среднем составляет 0,95-0,98 Вт/(м х К). Причем наболее высокий показатель теплопроводности отмечен у кварцевого стекла. С уменьшением доли оксида кремния в общей массе стекла или при замене его на любое другое вещество уровень теплопроводности понижается.
Температура начала размягчения — это такая температура, при которой тело (аморфное) начинает размягчаться и плавиться. Самое твердое —- кварцевое — стекло начинает деформироваться только при температуре 1200-1500 °С. Другие типы стекол размягчаются уже при температуре 550-650 0С. Эти показатели важно учитывать при различных работах со стеклом: в процессе выдувания изделий, при обработке краев этих изделий, а также при термической полировке их поверхностей.
Величина температуры начала плавления того или иного сорта и вида стекла определяется химическим составом компонентов. Так, тугоплавкие оксиды кремния или алюминия повышают температурный уровень начала размягчения, а легкоплавкие (оксиды натрия и калия), напротив, понижают.
Тепловое расширение. Этим термином принято обозначать явление расширения размеров того или иного тела под воздействием высоких температур. Эту величину очень важно учитывать при изготовлении стеклоизделий с различными накладками по поверхности. Материалы для отделок следует подбирать так, чтобы величина их теплового расширения соответствовала тому же показателю стекломассы основного изделия.
Коэффициент теплового расширения стекол прямо зависит от химического состава исходной массы. Чем больше в стекломассе щелочных оксидов, тем выше показатель температурного расширения, и, наоборот, присутствие в стекле оксидов кремния, алюминия и бора снижает эту величину.
Термостойкостью определяется способность стекла не поддаваться коррозии и разрушению в результате резкой смены внешней температуры. Этот коэффициент зависит не только от химического состава массы, но и от размера изделия, а также от величины теплоотдачи на его поверхности.
Оптические свойства стекла
Преломление света — так в науке называют изменение направления светового луча при его прохождении через границу двух прозрачных сред. Величина, показывающая преломлние света стекла, всегда больше единицы.
Отражение света — это возвращение светового луча при его падении на поверхность двух сред, имеющих различные показатели преломления.
Дисперсия света — разложение светового луча в спектр при его преломлении. Величина дисперсии света стекла прямо зависит от химического состава материала. Наличие в стекломассе тяжелых оксидов увеличивает показатель дисперсии. Именно этим свойством и объясняется явление так называемой игры света в хрустальных изделиях.
Поглощением света определяют способность той или иной среды уменьшать интенсивность прохождения светового луча. Показатель поглощения света стекол невысок. Он увеличивается лишь при изготовлении стекла с применением различных красителей, а также особых способов обработки готовых изделий.
Рассеяние света — это отклонение световых лучей в различных направлениях. Показатель рассеяния света зависит от качества поверхности стекла. Так, проходя сквозь шероховатую поверхность, луч частично рассеивается, и потому такое стекло выглядит полупрозрачным. Это свойство, как правило, используют при изготовлении стеклянных абажуров для ламп и плафонов для светильников.
Химические свойства стекла
Среди химических свойств необходимо особо выделить химическую стойкость стекла и изделий из него.
Химической стойкостью в науке называют способность того или иного тела не поддаваться воздействию воды, растворов солей, газов и влаги атмосферы. Показатели химической стойкости зависят от качества стекломассы и воздействующего агента. Так, стекло, не подвергающееся коррозии при действии воды, может деформироваться при воздействии щелочных и солевых растворов.
Теплопроводность и плотность стекла, свойства фарфора, фаянса, хрусталя
Теплопроводность стекла при различных температурах
В таблице представлены значения коэффициента теплопроводности стекол различной плотности в зависимости от температуры. Теплопроводность стекла приведена при отрицательной и положительной температуре — в интервале от 4 до 1140 К (-269…867°С).
Рассмотрены такие типы стекол, как: кварцевое стекло (плавленый кварц), крон (легкий ЛК5 и баритовой серии 100БК110), стекло боросиликатное (С38-1, С39-1, С47-1, пирекс), известково-натриевое, свинцово-тугоплавкое, фарфор, фаянс, флинт (тяжелый ТФ1 и баритовый БФ8), хрусталь с плотность 2600…2850 кг/м 3 .
Теплопроводность стекол различных типов при комнатной температуре лежит в диапазоне от 0,7 до 1,6 Вт/(м·град). Например, теплопроводность кварцевого стекла при комнатной температуре составляет величину 1,36 Вт/(м·град); теплопроводность хрусталя находится в пределах 0,88-0,91 Вт/(м·град); теплопроводность фарфора имеет величину 1,68 Вт/(м·град).
При низких отрицательных температурах стекло обладает теплопроводностью 0,13-0,4 Вт/(м·град). При увеличении температуры стекла его теплопроводность возрастает. При высоких температурах теплопроводность стекла увеличивается до значения 2-2,25 Вт/(м·град).
Примечание: Размерность теплопроводности в таблице Вт/(м·град), все образцы отожженые, теплопроводность стекол соответствует указанным в таблице температурам, возможна интерполяция данных.
Плотность стекла
В таблице представлены значения плотности стекол распространенных типов при температуре от 0 до 50°С в размерности кг/м 3 . Следует отметить, что плотность стекла находится в широком диапазоне — от 2180 до 8000 кг/м 3 и зависит от состава стекла, его температуры и режима термообработки.
К стеклам с низкой плотностью относятся: викор, кварцевое стекло, пирекс. Плотность обыкновенного оконного стекла составляет величину около 2500 кг/м 3 , что сравнимо с плотностью сплавов алюминия. К стеклам с высокой плотностью можно отнести стекла, содержащие оксиды тяжелых металлов. Например, стекла с большим содержанием (до 80%) оксидов бария BaO и свинца PbO, висмута, талия, вольфрама обладают плотностью около 8000 кг/м 3 — их удельный вес может превышать величину плотности стали.
Необходимо отметить, что плотность стекла зависит от температуры. При нагревании стекла его плотность снижается из-за увеличения объема за счет теплового расширения. В процессе нагрева плотность стекла снижается в среднем на 7,5 кг/м 3 на каждые 50 градусов температуры.
Термообработка также влияет на величину плотности стекла. В процессе закалки и отжига стекла изменяется его внутренняя структура. При закалке фиксируется состояние высокотемпературной структуры расплава, которая обладает большим объемом, чем структура стекла, подвергнутого длительному отжигу. В результате термообработки плотность закаленного стекла становиться ниже на 4-5%, по сравнению с отожженным.
Экспериментально определить плотность стекла или изделия из него можно с высокой точностью по методу пикнометра или с помощью гидростатических весов. Метод гидростатического взвешивания основан на законе Архимеда и сводится к определению объема вытесненной стеклом жидкости.
Вид стекла | Плотность стекла, кг/м 3 | Вид стекла | Плотность стекла, кг/м 3 |
---|---|---|---|
Алюмосиликатное (20% Al2O3) | 2530 | Натрий-кальцийсиликатное | 2400-2550 |
Боросиликатное термостойкое | 2200-2400 | Обыкновенное | 2400-2800 |
Викор | 2180 | Пирекс | 2230-2250 |
Высокосвинцовое | 5400-6200 | Свинцовосиликатное (21% PbO) | 2860 |
Кварцевое | 2200 | Флинтглас | 3900-5900 |
Стекло оконное | 2470 | Хрусталь | 2600-4000 |
В следующей таблице представлена плотность оптического бесцветного стекла обычных марок по ГОСТ 3514 при комнатной температуре.
Марка стекла | Плотность, кг/м 3 | Марка стекла | Плотность, кг/м 3 |
---|---|---|---|
ЛК3 | 2460 | К14 | 2530 |
ЛК4 | 2330 | К19 | 2620 |
ЛК6 | 2300 | БК4 | 2760 |
ЛК7 | 2300 | БК6 | 2860 |
ФК14 | 3390 | БК8 | 2850 |
К8 | 2520 | БК10 | 3120 |
БК13 | 3040 | ТК2 | 3200 |
ТК4 | 3580 | ТК8 | 3610 |
ТК12 | 3060 | ТК13 | 3440 |
ТК14 | 3510 | ТК16 | 3560 |
ТК17 | 3660 | ТК20 | 3580 |
ТК21 | 3980 | ТК23 | 3240 |
СТК3 | 3910 | СТК7 | 4220 |
СТК9 | 4110 | БФ11 | 3660 |
СТК12 | 3460 | БФ12 | 3670 |
СТК19 | 4090 | БФ13 | 3820 |
КФ4 | 2570 | БФ16 | 4020 |
КФ6 | 2520 | БФ21 | 3560 |
КФ7 | 2510 | БФ24 | 3670 |
БФ1 | 2670 | БФ25 | 3470 |
БФ6 | 3160 | БФ28 | 3960 |
БФ7 | 3230 | ТБФ4 | 4460 |
БФ8 | 3280 | ЛФ5 | 3230 |
ЛФ9 | 2610 | ЛФ10 | 2730 |
Ф1 | 3570 | Ф4 | 3670 |
Ф6 | 3480 | Ф9 | 2930 |
Ф13 | 3630 | ТФ1 | 3860 |
ТФ2 | 4090 | ТФ3 | 4460 |
ТФ4 | 4650 | ТФ5 | 4770 |
ТФ7 | 4520 | ТФ8 | 4230 |
ТФ10 | 5190 | ОФ1 | 2560 |
Удельная теплоемкость стекла
В таблице представлена удельная теплоемкость стекла различных видов и плотности в зависимости от температуры. Теплоемкость стекол дана в интервале температуры от 173 до 1473 К (-100…1200 °С). Размерность теплоемкости в таблице кДж/(кг·град).
Приведена удельная теплоемкость следующих стекол: стекло кварцевое, крон, натриевое, оконное, пирекс, термометрическое стекло, стекло флинт, стекла из природных силикатов: анорит, альбит, волластонит, диопсид, микроклин.
Удельная теплоемкость стекла основных типов находится в диапазоне 490…1125 Дж/(кг·град). К примеру, удельная теплоемкость силикатных стекол находится в диапазоне от 300 до 1050 Дж/(кг·град) и зависит от состава стекла. Низкая теплоемкость характерна для стекол с высоким содержанием тяжелых элементов — таких, как барий или свинец — это относится в первую очередь к тяжелым кронам и флинтам. К стеклам с высокой теплоемкостью при обычных температурах можно отнести такие, как: пирекс, натриевое стекло, термометрическое.
Следует отметить, что удельная теплоемкость стекла зависит от температуры — при нагревании стекла ее значение увеличивается. Например, удельная теплоемкость кварцевого стекла при температуре 1200°С на 25-30% выше этой величины при 20°С.
Теплоемкость, состав и другие физические свойства фарфора
В таблице представлен состав, тепловые и физические свойства фарфора при комнатной температуре.
Свойства фарфора указаны для следующих типов: установочный, низковольтный фарфор, высоковольтный и химически стойкий.
Представлены следующие свойства фарфора:
- состав фарфора;
- твердость по Моосу;
- удельная теплоемкость фарфора, кДж/(кг·град);
- теплопроводность стекла, Вт/(м·град);
- удельное электрическое сопротивление Ом·м;
- пробивное напряжение, кВ/мм;
- граница огнеупорности, К.
Следует особо отметить такое свойство фарфора, как теплоемкость. Удельная теплоемкость фарфора составляет от 750 до 925 Дж/(кг·град). Наибольшим значением теплоемкости обладает установочный фарфор, наименьшим — химически стойкий.
Теплофизические свойства фаянса
В таблице представлены теплофизические свойства фаянса при комнатной температуре.
Свойства фаянса даны для следующих типов: глинистый, известковый фаянс, полевошпатовый фаянс: хозяйственный, санитарно-технический.
В таблице приведены следующие свойства фаянса:
- плотность фаянса, кг/м 3 ;
- пористость, %;
- коэффициент теплового расширения (КТР), 1/град;
- предел прочности на сжатие, кГ/см 2 ;
- предел прочности на изгиб, кГ/см 2 ;
- теплопроводность фаянса, Вт/(м·град).
- Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др. Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
- Стекло: Справочник. Под ред. Н. М. Павлушкина. М.: Стройиздат, 1973.
- Чиркин В.С. Теплофизические свойства материалов ядерной техники.
- Сентюрин Г. Г., Павлушкин Н. М. и др. Практикум по технологии стекла и ситаллов — 2-е изд. перераб. и доп. М.: Стройиздат, 1970.
- ГОСТ 13569-78 Стекло оптическое бесцветное Физико-химические характеристики. Основные параметры
Свойства стекла (стр. 1 из 4)
Стекло — один из прекраснейших материалов, изобретенных еще 3000 лет до нашей эры. Несмотря на «солидный возраст», оно до сих пор честно служит людям, с каждым годом, открывающим в нем новые качества. Стекло — это красивые дома и сверхпрочные материалы, художественные изделия и ткани. Это один из материалов, которым никогда не перестанут любоваться люди. Оно незаменимо в быту и лабораторной практике. О стекле написано сотни книг, проведены и проводятся научные исследования, но до сих пор нет точного определения термина «стекло».
Стеклом называются все аморфные тела, получаемые путем переохлаждения расплава, независимо от их химического состава и температурной области затвердевания, и обладающие механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым.
В стекловидном состоянии могут находиться вещества, как естественного происхождения, так и полученные искусственно. К естественным стеклам относятся: вулканическая магма, пемза, смолы. Искусственные неорганические стекла — переохлажденные расплавы, в состав которых входят окиси кремния, бора, фосфора, щелочных и щелочноземельных металлов.
Исходными материалами для получения искусственной стекольной массы являются кварцевый песок, кальцинированная сода, поташ, сульфат натрия, мел и известняк, карбонат магния, доломит, карбонат бария, натриевая и калиевая селитры. В некоторые сорта стекол вводят окись алюминия, окись свинца и окислы других металлов.
Основным компонентом стекла является двуокись кремния — кремнезем, температура плавления которого равна 1728°С. Содержание окиси кремния в стекле составляет 50—85%, а в кварцевом стекле 98,8—99,9%. Содержание других компонентов, входящих в состав стекол, приведено в таблицах 1 и 2.
Цветные стекла получают, вводя в шихту окислы или другие соединения разных элементов, например для окраски стекла в синий цвет вводят соединения кобальта, в зеленый — окись хрома, в фиолетовый — соединения марганца, в рубиновый—закись меди или металлическое золото.
Тип, марка стекла | Si02 | А123 | в2о3 | СаО | MgO | РЬО | ВаО | Zr02 | ZnO | Na2 | К2 | Fe23 |
Тюрингенское | 68,74 | 3-4 | 6,2-8 | _ | _ | _ | _ | ___ | 12-18 | 0-8,5 | _ | |
Унихост | 68,9 | 3,9 | — | 5,5 | 2,9 | — | — | — | — | 17,8 | 1,3 | — |
АН | 70,7 | 4,2 | 2,3 | 7,0 | — | — | — | — | — | 13,9 | 1,9 | — |
Х8 | 69,2 | 3,5 | 1,2 | 5,8 | 3,6 | — | — | — | — | 16,0 | 0,9 | — |
Мурано X | 67,0 | 6,7 | 3,0 | 4,3 | — | — | _ | ___ | — | 19.0 | — | — |
Содоизвестковое | 71,0 | 0,85 | — | 7.7 | 3,8 | — | 0,5 | — | — | 15,5 | — | |
Сиал | 75,0 | 6 | 7 | 1,7 | — | — | 4,3 | — | — | 6,5 | — | |
Симакс | 79,0 | 3 | 11,9 | — | — | — | — | — | — | 5,5 | — | |
Палекс | 70,84 | 4,48 | 6,31 | 4,17 | 2,02 | — | ____ | — | 2,62 | 8,37 | 0,99 | 0,36 |
Лабораторное | 69,0 | 4,90 | 4,3 | 4,50 | — | — | 3,5 | — | 5,5 | 8,6 | — | — |
Ветхайм ам Майн | 69,25 | 5,96 | 8,56 | 0,99 | 0,45 | — | 3,63 | — | —– | 8.57 | 2,25 | 0,33 |
1447 Ш | 64.3-64,7 | 4-7 | 8,7-12,0 | 0,1-0,6 | — | — | — | — | 10-12 | 7-9,7 | — | — |
G20 | 74,7-75,7 | 4,3-6,2 | 7,0-8,7 | 0,75-1 | — | — | 3,5-4,2 | — | — | 6,5-7,5 | — | 0,1-0,3 |
52 | 76,6 | 3 | 6 | — | — | — | 3 | 3 | — | 8 | — | — |
Корнпнг | 80,0 | 2,71 | 11,31 | 0,76 | — | — | — | — | — | 4,74 | 0,35 | — |
Совирель | 80,0 | 2,25 | 13,0 | — | — | — | — | — | — | 3,50 | 1,15 | 0,05 |
Разотерм | 78,25 | 2,74 | 12,18 | 0,85 | — | — | — | — | — | 5,39 | 0,41 | — |
Дюран 50 | 79,69 | 3,10 | 10,29 | 0,77 | 0,87 | — | — | — | — | 5,20 | — | — |
Гнзиль | 80,6 | 2,70 | 12,20 | 0,12 | — | — | — | — | — | 4,15 | — | — |
-Монакс | 74,66 | 3,89 | 13,44 | 0,75 | 0,49 | — | — | — | — | 5,89 | 0,79 | — |
Варят стекло в специальных печах при высоких температурах. Во время варки стекла происходят сложные химические и физические процессы, в результате которых шихта, претерпевая ряд изменений, превращается в осветленную и однородную стекломассу.
Процесс стеклообразования начинается при достижении 1200— 1240°С. В заводских условиях стекло варят при 1400—1450°С; осветление стекломассы происходит при 1500 °С. Особые сорта стекла варят при еще более высокой температуре.
2. Физические свойства
Физические свойства стекла зависят от его химического состава, условий варки и последующей обработки. Стекло не имеет определенной точки плавления. Оно переходит в жидкое состояние постепенно, становясь мягче при повышении температуры.
Часто применяют термин «температура размягчения» стекла. По-видимому, эта температура лежит выше температуры отжига стекла, но сама по себе эта величина довольно неопределенна.
Важнейшими свойствами стекла, определяющими условия его варки и дальнейшей обработки, являются вязкость и поверхностное натяжение.
Вязкость. Свойство жидкостей оказывать сопротивление их течению—перемещению одного слоя относительно другого — под действием внешних сил называют вязкостью и обозначают г). Таким образом, вязкость характеризует внутреннее трение, поэтому это свойство часто называют внутренним трением. Вязкость — понятие, обратное текучести. Количественно эту величину выражают силой, действующей на единицу площади соприкосновения двух слоев, которая достаточна для поддержания определенной скорости перемещения одного слоя относительно другого. В системе измерения СГС вязкость измеряется в пуазах; пуазы принято обозначать П: 1 пуаз = 1 дина-секунда/сантиметр = 100 сантипуаз = 10 е микропуаз или 1П= 1 дн-с/см = = I г/ = 10 2 сП = 10 6 мкП. В единицах измерения СИ вязкость выражается в паскаль-секунда: 1П = 0,1 Па-с.
Вячкость стекла в обычных условиях равна Ю 13 —10 ls П При нагревании вязкость стекла уменьшается, оно делается более мягким и тягучим, так что его можно формовать, подвергать тепловой обработке.
Обрабатывать на пламени стеклодувных горелок можно только размягченное стекло, вязкость которого лежит в интервале от 10 3 до 10* П. Механическое формование стекла производят при температуре 800—1100 °С и вязкости 10 4 —4 -10 3 П.
При остывании стекло вновь твердеет. Температура, при которой вязкость стекла достигает 10 13 П, называется температурой стеклования.
Кривая изменения вязкости с уменьшением температуры должна быть относительно пологой, т. е. вязкость не должна изменяться слишком резко. В зависимости от вида кривой «вязкость — температура» стекла делят на «длинные» и «короткие». К «длинным» стеклам относятся сравнительно легкоплавкие стекла — свинцовые, № 23, молибденовые и др.; к «коротким» — стекла типа «пирекс». Самым «коротким» стеклом является кварцевое.
При быстром изменении температуры в стекле возникают неравномерные внутренние напряжения. Такое стекло очень непрочно и легко растрескивается. Напряжения в стекле снимают путем отжига. Для этого изделия помещают в печь в зону с температурой на 20—30 С ниже температуры стеклования, выдерживают при этой температуре некоторое время, а затем медленно охлаждают. Естественно, чем меньше вязкость стекла, тем меньше нужно его нагревать, чтобы снять внутренние напряжения.
Поверхностное натяжение. Поверхность любой жидкости, а следовательно и расплавленной стекломассы, всегда стремится сократиться за счет сил, которые называют силами поверхностного натяжения. Чтобы увеличить поверхность, требуется затратить работу. Размер этой работы, отнесенный к единице поверхности, называют поверхностным натяжением и обозначают о. В системе единиц СГС эту величину измеряют в динах на сантиметр, в СИ — в ньютонах на метр; 1 дин/см = = 1 ■ Ю- 3 Н/м. Поверхностное натяжение стекла равно 220— —380 дин/см и зависит от его химического состава. При введении в состав стекла окисей алюминия и магния его поверхностное натяжение увеличивается, а при введении окисей калия, натрия, бария и фосфора — снижается. Поверхностное натяжение уменьшается при повышении температуры.
Чем больше поверхностное натяжение стекла, тем труднее его обрабатывать и тем сильнее приходится нагревать его стеклодуву при обработке.
3. Механические свойства
Плотность. Плотность определяется отношением массы тела к его объему. В системе единиц СГС ее измеряют в граммах па кубический сантиметр, в СИ — в килограммах на кубический метр: 1 г/см 3 = 1-Ю 3 кг/м 3 . Плотность стекла з, при котором тела теряют способность быть упругими.
Потеря упругости у разных материалов проявляется по-разному: одни после снятия усилия остаются деформированными; другие при достижении предела упругости разрушаются. Первые материалы называются пластичными, вторые — хрупкими. Стекла относятся ко второй группе материалов.
Хрупкость. Хрупкость — состояние материла, в котором под действием внешних сил материал совсем не проявляет остаточной деформации и разрушается. Большая хрупкость стекла весьма ограничивает его применение. Хрупкость увеличивается, если стекло неоднородно по составу или толщине, если в нем имеются вкрапления инородных тел, пузырьков воздуха, если поверхность его поцарапана.
Материал можно вывести из хрупкого состояния, изменив внешние условия. Например, хрупкое при обычных условиях стекло становится пластичным при нагревании. Другие материалы будучи пластичными при обычных условиях, становятся хрупкими при понижении температуры. Так, резина при охлаждении становится хрупкой и легко разбивается. Таким образом, одни и те же материалы при разных условиях могут находиться или в хрупком, или в пластичном состоянии. Этим пользуются при формовке и обработке стекла, при изготовлении из него разных деталей и приборов. Различные сорта стекла при этом требуется нагреть до разной температуры.